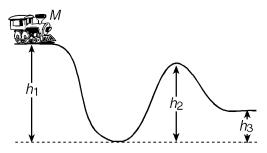

Name:

- 1) If the kinetic energy of a given mass is to be doubled, its speed must be multiplied by
 - A) 8 B) $\sqrt{2}$ C) 2 D) 4
- 2) When the speed of an object is halved, its kinetic energy is
 - A) quartered B) doubled C) halved D) the same
- 3) A cart of mass *m* traveling at speed *v* has kinetic energy *KE*. If the mass of the cart is doubled and its speed is halved, the kinetic energy of the cart will be
 - A) twice as great B) four times as great C) one-fourth as great D) half as great

Question 4 refers to the following:

The diagram below represents a flat racetrack as viewed from above, with the radii of its two curves indicated. A car with a mass of 1,000 kilograms moves counterclockwise around the track at a constant speed of 20 meters per second.

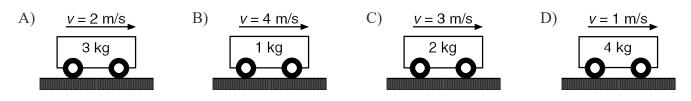
4) Compared to the kinetic energy of the car while moving from *A* to *D*, the kinetic energy of the car while moving from *D* to *C* is


A) the same

B) greater

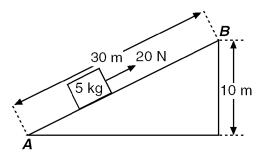
5) A 1.0-kilogram mass gains kinetic energy as it falls freely from rest a vertical distance, *d*. How far would a 2.0-kilogram mass have to fall freely from rest to gain the same amount of kinetic energy?

C) less


- A) d B) $\frac{d}{4}$ C) $\frac{2}{d}$ D) $\frac{d}{2}$
- 6) A train of mass M on a frictionless track starts from rest at the top of a hill having height h_1 , as shown in the diagram below.

What is the kinetic energy of the train when it reaches the top of the next hill, having height h_2 ?

A) $Mg(h_2 - h_3)$ B) $Mg(h_2 - h_2)$ C) $Mg \cdot h_1$ D) 0


7) Which cart shown below has the greatest kinetic energy?

- 8) The kinetic energy of a 10.0-kilometer mass moving at a speed of 5.00 meters per second is
 - A) 2.00 J B) 250. J C) 125 J D) 50.0 J
- 9) A baseball bat strikes a ball with an average force of 2.0×10^4 newtons. If the bat stays in contact with the ball for a distance of 5.0×10^{-3} meter, what kinetic energy will the ball acquire from the bat?
 - A) 2.5×10^1 joules B) 1.0×10^2 joules C) 2.0×10^2 joules D) 4.0×10^2 joules
- 10) A 1.0×10^3 -kilogram car is moving at a constant speed of 4.0 meters per second. What is the kinetic energy of the car?
 - A) 4.0×10^3 J B) 1.6×10^3 J C) 8.0×10^3 J D) 2.0×10^4 J

Question 11 refers to the following:

The diagram below represents a 20-newton force pulling an object up a hill at a constant rate of 2 meters per second.

11) The kinetic energy of the moving object is

A) 5 J	B) 10 J	C) 15 J	D) 50 J
--------	---------	---------	---------

12) A student rides a bicycle up a 30.° hill at a constant speed of 6.00 meters per second. The combined mass of the student and bicycle is 70.0 kilograms. What is the kinetic energy of the student-bicycle system during this ride?